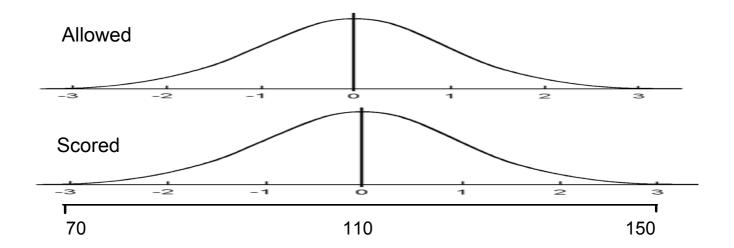
Mini Project

You are going to find two sets (min 30 each) of related data to compare.

For each set, calculate mean and standard deviation.

- 1) Use standard deviation and percentages to make at least two comparisons between the data sets
- 2) Use the z-score formula to explain what a z-score of 1.3 (90th percentile) would mean within both sets.
- 3) Make one additional comparison using another fact.


Denver Nuggets Points		Allowed Per Game
Mean	110.2	108.9
Standard Deviation	13.9	13.4

Example

Two-thirds (68%) of games the Nuggets score between 96.3 and 124.1 points whereas they allow 95.5 to 122.3 in 68% of games.

The top 2.5% of Nuggets scores this year were above 138 whereas they allowed over 135 only 2.5% of the time.

Their point differential then is +1.3, which places them 12th in the league (of 30 teams)

For the first set, a z-score of 1.3 is 128.3 points. Meaning 90% of the time they score less than this amount. 90% of the time they allow less than 126.3 points to be scored. If this trend continues, the margin for error over their last four games is very thin.

Potential Topics

Sports

People

- Team v Team

- Player Salaries

- Team Heights

- Team Attributes (40 yd dash times) - Actor and Actress Height

Movies

-Rotten Tomatoes By Genre

- Box Office Revenue by year

- Actor Pay v Actress

Cars

- Height - Cost by Company

- Weight - Horsepower

- Age for a specific job - Weight

- Top speeds